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Abstract. The heat capacity of the S=CO Ising ferromagnet arrayed on a simple cubic 
lattice is investigated by analysis of Monte Carlo data for the internal energy. A function 
is least-squares fitted to the energy data close to the critical temperature T,. The function 
is consistent with the expected singularity of the heat capacity C ( t ) =  
A*(tl-"[l +D*ltl"l]+B*, where r = (T- Tc)/Tc and the f superscripts refer to r > 0  and 
t < 0, respectively. The results of the data analysis show that the relation B' = B- is 
supported and that A+/A- accords with the expected universal value for a system with 
king symmetry. The ratio of the confluent singularity amplitudes D'/D- is somewhat 
lower than the expected universal value. The amplitudes of the leading and confluent 
singularities of the order parameter are reported also. 

1. Introduction 

Close to the critical temperature T, the heat capacity of the Ising ferromagnet is 
expected to vary with temperature as 

where t = ( T -  T J /  T,. Usually, A'ltl-" is referred to as the leading singularity and 
D*lt('i as the leading confluent singularity. Recently, C( t )  has been studied in the 
S = f case by analysis of energy data derived from Monte Carlo (MC) simulations (Knak 
Jensen and Mouritsen 1982). This analysis indicates that accordance of A+/A- with 
the expected universal value is obtained only provided the leading confluent singularity 
vanishes. Some high-temperature series analyses (Camp et a1 1976) suggest that D+ 
is zero for S = f, whereas analysis of longer series indicates that Df is finite for S = 
(Nickel 1981). Series analysis for general S gives evidence that the amplitude vanishes 
for S between 1 and 2 (Zinn-Justin 1981). 

Since the analysis of MC data fails to accord with the universal value for A+/A- 
in the presence of a confluent singularity for S =f it is useful to investigate whether 
this is the case in general or whether it is restricted to S = f. This paper reports an 
investigation of the S = CO Ising ferromagnet arrayed on a simple cubic lattice by the 
same method as used for the S = $  case. The method utilises the energy rather than 
C( t )  since the former has a much smaller statistical error than the latter (a fluctuation 
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quantity). Close to T, the energy varies as 

The parameters E:, i = 1,. , .4, are simply related to the parameters in (1) .  The 
additional parameter E,-the critical energy-in (2) relative to (1)  may be estimated 
from finite-size analysis (see e.g. Binder 1979) using 

E ( t  = 0 ,  N )  - E,= N - ( l - a ) ' u ,  (3)  

where E ( t  = 0, N )  denotes the energy for a system with N 3  spins at T = T,. 
It turns out that a data analysis incorporating a confluent singularity leads to 

accordance of A+/A- with the universal value in the S=co case. This agreement 
makes it meaningful to investigate if the analysis leads to accordance also with the 
universal value for D+/ D-. The analysis shows that the derived value for D+/ D- is 
lower than the value expected theoretically. An analysis performed on constructed 
'data' suggests that the disagreement is related to higher-order correction terms, which 
cannot easily be handled in the analysis, due to insufficient accuracy of the MC data. 

The paper is organised as follows. In § 2 the model and some of the computational 
details are presented. Section 3 describes the analysis of the MC data for the energy, 
both for t = 0 and t # 0. This section also contains an analysis of the order parameter, 
which is obtained as a by-product of the MC calculations. Finally, the results are 
discussed in § 4. 

2. Model and computational details 

The S = co Ising ferromagnet is defined by the Hamiltonian 

where ( j ,  k) indicates a nearest-neighbour pair and Si, is the z-component of a classical 
vector Sj = (S,, Sly, SI , )  of unit length. The x and y components do not interact but 
merely act as a reservoir for fluctuations. The model (4) is arrayed on a simple cubic 
lattice of cubical form of size L = N 3  with periodic boundary conditions. 

A conventional Monte Carlo importance sampling simulation is used to derive the 
internal energy E = (Z) and the order parameter M = K'(1 Sjzl) .  The simulations 
are performed for a number of temperatures selected to resemble a uniform distribution 
in ln(lt1) and to be symmetric around t =O.  In all, 46 temperatures are considered. 
The smallest value of It) is 6 X Finite-size effects are important when the correla- 
tion length of the system becomes comparable to the linear dimension N of the lattice. 
These effects are avoided by checking that the data are insensitive to an increase in 
lattice size. The largest lattice considered has a linear dimension of N = 40. All data 
are obtained as an average of at least three simulations starting from different initial 
configurations of the spins. The error of the data AE is estimated as the root-mean 
square deviation. The relative errors AE/  E are typically 2 X and lo-' for r # 0 
and t = 0, respectively. Similarly, the magnetisation data has typically a relative error 
of 2 x  
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3. Results 

3.1. Data analysis for t = O  

The energy is calculated for a number of different lattice sizes at T = T, = 1.6639 J/ k g ,  
which is the estimate for the critical temperature derived from analysis of high- 
temperature series (Camp and Van Dyke 1975). The data E(t = 0, N) are used to 
determine E, using (3). In this analysis the exponent (1 - a)/ v is set to 1.413 f 0.004 
based on v = 0.6300 f 0.0015 (Le Guillou and Zinn-Justin 1980) and 2 - a = dv, where 
d is the spatial dimension. It is found that the data may be represented by 

E(r=O,N)=E,+pN-('-")'" ( 5 )  

E, = -0.385 * 0.03 and p=-1.08*0.09. (6) 

for N ranging from 40 to 10 with 

Figure 1 shows the data and the line given by ( 5 )  and (6). The limits of error on E, 
and p are calculated from the statistical error on the data and the limit of error of v. 
An error AT, in the estimate of T, has not been included. AT, is not reported in the 
literature. If AT, is set to 2 X the contribution to the limit of error on E, is 
approximately 2 x 

-0381 

N - I l - K I I V  

Figure 1. Energy for the S = Q) king ferromagnet arrayed on a simple cubic lattice with 
N 3  spins calculated at T, = 1.6639 J /  kB ( t  = 0). The line is obtained from a least-squares 
fit and is represented by E (  t = 0, N )  = -0.385- 1.09 N-' 413. 

3.2. Data analysis for t # 0 

The least-squares fitting of (2) to the data involves in principle a large number of 
parameters to be determined, E ?, the critical exponents and T,. Moreover, there may 
be additional confluent singularities (Rehr 1979). All these parameters cannot be 
extracted from the data. Instead the strategy is adopted to fix the exponents and T, 
at the literature values and determine the unknown linear parameters, E ?. Specifically, 
the exponents are set to a = 0.1 1 and A ,  = 0.498 (Le Guillou and Zinn-Justin 1980). 
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Least-squares fits are only accepted if the parameters stay reasonably constant over 
an interval. 

The simplest analysis considered is to fit (2) with E: = E Q  = O  for T >  T, and 
T < T,, separately, to the data for a number of different E, values within the interval 
in (6). Stable fits are obtained only for -0 .3886 E C s  -0.385. The derived values for 
E: are given in table 1. It appears from this table that - E : / E ;  =A+/A-=  
0.55 *0.21 accords with the theoretical estimates of 0.55 (BrCzin et al 1976) and 0.48 
(Bervillier 1976) obtained to first and second order in E (  =4 = d ) ,  respectively. Further- 
more, the relation B+=B-(E: = - E ; )  is supported by the data in table 1. 

Table 1. Parameters E:, i = 1 , 2 ,  and 3 in (2) estimated from a least-squares fit with 
E;=E;=O,  (r=O.11 and A,=O.498. A plus (minus) 
T > T,( T < TJ.  

superscript indicates 

T < T ,  -7.7 f 0.7 3.9* 1.2 1.3k0.7 
T >  T, 4.1 * 1.2 -4.2 * 2.2 0.1 k 1.5 

A more comprehensive analysis including the E: terms (a four parameter fit) does 
not lead to stable fits. It is more useful to reduce the number of parameters to be 
determined. It is actually possible to make such a reduction and still retain a confluent 
singularity. This is achieved by fitting (2) simultaneously for T >  T, and T <  T, and 
imposing the constraint -E: = E ;  = EZ. This analysis contains five parameters E:, 
E; ,  and EZ. (ET,  E : )  and (E; ,  E ; )  are determined only from the data for T >  T, 
and T < T,, respectively, whereas E2 is determined from all the data, so the analysis 
is in a way a two and a half parameter fit. The results are given in table 2. The data 
in tables 1 and 2 accord, but the estimated limits of error are much smaller in the 
latter table due to the imposed constraint. 

Table 2. Parameters E:, i = 1 ,2 ,  and 3 in (2) estimated from a least-squares fit with 
E ;  = E ;  = 0, CY = 0.1 1 and A I  = 0.498. The least-squares fit is imposed the constraint 
- E ;  = E -  - E  2 - 2. 

4.145~0.16 4.3010.30 0.08 i 0 . 4 3  -7.96*0.21 1.15 10.30 

The ratio A+/A- may be estimated directly from the analysis by following its 
variation as the It[-region is increased up to ~rmax~--O.1O. It turns out that A+/A- 
fluctuates less than E: and E;, individually, implying a correlation between E :  and 
E;. The ratio is estimated to 

A+/A-=0.521*Oo.014 (7) 
which agrees well with the theoretical estimate. 

Least-squares fits have also been performed for a fixed at  the extrema of its 
confidence interval, i.e. a = 0.1055 and a = 0.1 145 (Le Guillou and Zinn-Justin 1980). 
The root-mean square derivation is as small as for a =0.1100. However, the para- 
meters (except E:) vary by 7-15%, whereas A+/A- varies 3 4 % .  Thus it appears 



Heat capacity of the S = CO Ising ferromagnet 1153 

that a slightly wrong value for a does not change the accordance of A+/A- with the 
universal value. This is in line with the idea that effective exponents obey scaling 
(Aharony and Ahlers 1980). Similarly, A+/A-  is still in accordance with the universal 
value when T, is varied within its assumed confidence interval of 2 X lo-,. The 
accordance is preserved also if AI is shifted f0.02 (Le Guillou and Zinn-Justin 1980). 

3.3. Conpuent singularities 

It has been shown that the ratio of the confluent singularity amplitudes 
D’/ D-[ = E; E: / (E :E; )] is universal (Aharony and Ahlers 1980, Chang and Hough- 
ton 1980). A series valid for a general symmetry n has bken derived to second order 
in E (Chang and Houghton 1980). For a system with Ising symmetry ( n  = 1) the series 
is 

D + / D - =  1+1.15&-4.56e2, (8) 

which obviously is unsuited to direct extrapolation to E =1. However, a Pad6 
approximant suggests D+/ D- - 1.23. Good agreement with the universal value has 
been found for CO2 ( n  = 1) (Greer and Moldover 1981) and for ,He ( n  = 2) (Mueller 
et a1 1976). In other cases the sign of D + / D -  is found to be negative (Bloemen et a1 
1980, Kallback et a1 1981). 

The data in table 1 lead to an estimate for D c / D - -  2.7k4.0 which accords with 
the universal value, however, the limits of error are so large that the result deserves 
little merit. The constrained least squares fitting with a = 0.1 100 and AI = 0.498 leads 
to an estimate D+/ D- = -0.20 f 0.82, which disagrees with the universal value. Vari- 
ation of a and A I  by the same amounts as described above does not lead to accordance 
either, although a = 0.1 145 favours a larger value for D+/  D-.  

The origin of the lack of agreement is investigated by analysing a set of constructed 
‘data’, derived from (2) with the following parameters; (i): E;,  E2, and E; are close 
to the values in table 2, (ii): E: is given a value consistent with the universal value 
D c / D - ,  (iii): E: =-E:, (iv): E ;  =f, and (v): A2=2Al. The constructed ‘data’ are 
calculated at the same t-values as used in the MC simulations, and they are given a 
random error of the same magnitude as pertains to the MC data. The ‘data’ are analysed 
with the constrained fitting procedure, which neglects the E4-terms. The analysis uses 
the same values for T,, a and AI as employed in constructing the ‘data’. The results 
show that the derived values of E: and E2 agree well with the input values, whereas 
E ;  becomes some sort of average of the input values of E; and E:. The estimate 
for D+/ D- is lower than the universal value by 63%. This suggests that the neglect 
of higher-order corrections in the analysis of the MC data may be a major cause for 
the low value obtained for D + / D - .  Obviously, it is desirable to include the E,-terms 
in the constrained least-squares analysis. However, the smoothness of E ( t )  combined 
with the insufficient accuracy of the data lead to an unstable fit. 

3.4. Analysis of order parameter data 

The expected functional form for the order parameter 

m(lt1) = mo(-t)B[1+m,(- t )A1+m2(-t)A2] t < O  (9) 
is least-squares fitted to the data. The exponents are set to j? =0.3250*0.0015 and 
A, = 0.498 f 0.020 (Le Guillou and Zinn-Justin 1980). The analysis is performed first 
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without the m2(-t)Az term. It is found that (9) represents the data for 6X 
0.15 with 

-fs 

mo= 1.164*0.010 and m ,  = -0.12 * 0.02. (10) 

The limits of error in (10) stem from the uncertainties in the exponents. The above 
analysis is performed for T, = 1.6639J/ k g .  If T, is shifted by *2 X the least-squares 
fits become poorer, suggesting that the reported value for T, may be fairly accurate. 
The least-squares fit becomes unstable when the m2(-t)"2 term is included in the 
analysis. This applies for A2 = 2Al as well as for A2 = 0.9 (Rehr 1979). 

4. Discussion 

The energy data analysis, which includes a confluent singularity, leads to an estimate 
for A+/A-  in accordance with the universal value. This result differs from the findings 
of a similar analysis of the S = $ Ising ferromagnet (Knak Jensen and Mouritsen 1982), 
where accordance was obtained only in the absence of a confluent singularity. The 
origin of the difference is not clear. It has been suggested (Adler 1983) that the 
estimate used for T, in the S = 4 case will favour the absence of a confluent singularity. 
The argument is that T, is derived from a series analysis, which neglects confluent 
singularities. It may therefore be expected that use of these critical temperatures 
may-in a self-consistent way-result in least-squares analyses yielding a zero ampli- 
tude for the confluent singularity. The point is well taken and Adler proceeds to 
calculate T, with a method allowing for a confluent singularity. The relative difference 
between the two sets of estimates for T, is at the very most 4 X for the S = $ king 
ferromagnet arrayed on a simple cubic lattice. The new critical temperatures have 
been used in an analysis of the energy data. The derived estimate for A+/A- does 
not accord with the universal value. The situation might have been different had the 
data been closer to t = 0 than 6 x 

The argument of Adler is applicable also in the present case of the S =cc Ising 
ferromagnet as T, is derived from a procedure, which neglects confluent singularities. 
However, in this case the estimate for A+/A- accords with the universal value. 

The data analysis reported here does not lead to agreement of D+/ D- with the 
expected theoretical value. The reason is probably that the estimates for D' and D- 
contain significant contributions from higher-order correction terms. These are difficult 
to separate unless the statistical errors become much smaller. 
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Note added in proof. Recently, and interesting analysis has been performed on Nickel's 2lst-order series for 
the susceptibility and correlation length for the spin-SIsing ferromagnet arrayed on a BCC lattice (Ferer M 
and Velgakis M J 1983 Phys. Rev. B 27 2839-54). The authors use an unbiased method of confluent 
singularity analysis tailored to the loose-packed lattices. Ferer and Velgakis find that 'the confluent correction 
is apparently not significant for spin-4'. Furthermore, the amplitude of the confluent singularity is finite for 
S = m. These findings are in accordance with the present investigation of the heat capacity of the S = CCI Ising 
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ferromagnet on a simple cubic lattice and the previous investigation of the same function in the S = i case 
(Knak Jensen and Mouritsen 1982). 
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